	C.	ARBOXYLATE			
Amine used	М. р., °С	Yield.	Formula	Caled % Ni	trogen
	With 1	Phenyl Salicy	late	Calcu,	1
D 11	1 10 1 10				
Piperidine	142-143	69	$C_{12}H_{15}NO_2$	6.8	6.9
Cyclohexylamine	85-86	79	$C_{13}H_{17}NO_2$	6.4	6.4
Benzylamine	135-136	77	$C_{14}H_{13}NO_{2}$	6.2	6.2
n-Butylamine ¹¹	¢	81			
Laurylamine	71-72	75	C ₁₉ H ₃₁ NO ₂	4.6	4.6
Diethylamine	ь	68	$C_{11}H_{15}NO_2$	7.3	7.2
Ethylenediamine	183-184	69	$C_{16}H_{16}N_2O_4$	9.4	9.5
Chloroaniline	155	83	C ₁₃ H ₁₁ CINO	15.3°	15.0°
Aminobiphenyl	110	85	$C_{19}H_{16}NO_2$	đ	d
o-Aminophenol	125	22.4	C ₁₃ H _* NO ₂	6,63°	6.63*
p-Aminophenol ¹²	176	57			
m-Aminophenol	184	58	$C_{13}H_{11}NO_{2}$	6.11	6.10
5-Aminoindazole	280	37	$C_{14}H_{11}N_{3}O_{2}$	16.62	16.57
6-Aminoindazole	234 - 235	31	$C_{14}H_{11}N_{3}O_{2}$	16.62	16.56
<i>m</i> -Phenylenediamine ¹²	199200	49			
5-Aminobenzotriazole	245	42	$C_{13}H_{10}N_4O_3$	22.03	21.74
1.2,3,4-Tetrahydroquinoline	138-139	34	$C_{16}H_{1\delta}NO_2$	5.5	5.6
	With Phenyl-1-hydr	oxynaphthale	ne-2-carboxylate		
Diethylamine	1	63	$C_{15}H_{17}NO_{2}$	5.77	5.6
o-Phenylenediamine	> 265	78	$C_{17}H_{12}N_2O$	a	σ
o-Aminophenol	188	89	$C_{17}H_{11}\mathrm{NO}_2$	h	h

TABLE I

AMIDES AND HETEROCYCLIC COMPOUNDS FROM PHENYL SALICYLATE AND FROM PHENYL-1-HYDROXYNAPHTHALENE-2-

^e B. p. 153-156^o (3 mm.). ^b B. p. 146-148^o (4 mm.). ^c Chlorine. ^d Calcd.: C, 78.80; H, 5.18. Found: C, 78.8; H, 5.1. ^e Calcd.: C, 73.8; H, 4.3. Found: C, 74.24; H, 4.53. ^f B. p. 130-133^o (1 mm.). ^e Calcd.: C, 78.40; H, 4.6. Found: C, 78.6; H, 4.4. ^h Calcd.: C, 78.0; H, 4.22. Found: C, 77.9; H, 4.3.

acetanilide⁹ or aniline¹⁰, from methyl salicylate and an aliphatic amine.11,12

(9) German Patent 289,027 [Frdl., 12, 184 (1914-1916)].

(10) Schöpff, Ber., 25, 2740 (1892).

(11) Hurd. Fancher and Bonner, THIS JOURNAL, 68, 2745 (1946).

(12) Fargher, Galloway and Probert, J. Textile Inst., 21, 245T (1930) [C. A., 24, 6026 (1930)].

COMMUNICATION No. 1154

KODAK RESEARCH LABORATORIES

ROCHESTER 4, NEW YORK RECEIVED JULY 10, 1947

A New Process for the Preparation of Thioglycolylamides

BY JAMES A. VANALLAN

It is known that thioglycolylamides may be obtained by alkaline hydrolysis of carbamyl thioglycolylanilides¹ but the yields are low (15%) and several steps are required to obtain the product. Also acetothioglycolylamides, which are obtained from the acid chloride and an amine, may be saponified to the required thioglycolylamides but the intermediate acid chloride² is difficult to obtain, and again the process consists of several steps.

It has now been found that thioglycolylamides may be made in excellent yield and in a high state of purity without protecting the thiol group. The process consists of mixing an amine and thiogly-

(1) Beckurts and Frerichs, J. prakt. Chem., [2] 66, 174 (1902).

(2) Benary, Ber., 46, 2105 (1913).

colic acid in molecular proportions with benzene as a solvent and utilizing a Clarke-Rahrs ester column³ to remove the water as it is formed. The reactants are at all times in an atmosphere of benzene during the course of the reaction, which minimized the formation of disulfide. The crude product, therefore, usually possesses a higher degree of purity than that obtained by other processes. The process is illustrated by the preparation of thioglycolylanilide.

Thioglycolylanilide.—Thioglycolic acid (46 g.) and aniline (45 g.) are mixed in 250 ml. of benzene. This solution is refluxed, using an ester column, until approximately 9 ml. of water has separated (about nine hours). The benzene solution is then treated with an equal volume of petroleum ether and chilled. The product (70 g., 85%) separates as a mass of white crystals; m. p. $103-105^\circ$. A recrystallization from dilute alcohol raises the melting point to 110°.

(3) Eastman Kodak Company, "Syn. Org. Chem.," 9, No. 3, May (1936).

Communication No. 1156

KODAK RESEARCH LABORATORIES ROCHESTER 4, NEW YORK

RECEIVED JULY 26, 1947

Resonance and Hydrogen Bond Effects on the Basic Strengths of Certain Arylalkyl Azomethines

BY CHARLES D. WAGNER AND EDWARD D. PETERS

When aliphatic primary amines are treated with most of the common aromatic aldehydes, azo-